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SUMMARY
A two-dimensional elastic finite difference code was
developed to examine the characteristic of seismic waves
propagation in a fractured rock containing multiple,
aligned fractures. The displacement-discontinuity
boundary conditions were used to model the fractures
explicitly. The effect of fracture spacing on the wavefiled
generated by an explosion source was examined by
changing the spacing from 0.6 to 0.15 of a wavelength. A
wavefiled was computed for a transversely anisotropic (TI)
medium with elastic moduli equivalent to the effective
static moduli of the most densely fractured system. The
results showed significant differences between the
amplitudes, velocities, and frequency content of the waves
in the explicit and equivalent medium fracture models.
These differences result from frequency-dependent time
delays and filtering across each fracture and channeling
along fractures that are not included in the zero-frequency
effective medium description. These effects lead to an
unusually strong velocity and amplitude anisotropy which
cannot explained by the TI medium approximation.  The
characterization may prove useful in characterizing
fractures in reservoir rock.

INTRODUCTION
Single fractures in rock can give rise to a variety of
interesting seismic wave phenomena, including low-pass
filtering of transmitted waves, the generation of reflected
and converted waves, and the guiding of fracture interface
waves (Schoenberg, 1980; Pyrak-Nolte et al., 1990a;
Pyrak-Nolte et al., 1992). Although much work has been
done on seismic wave propagation in rock with multiple
fractures (e.g., Pyrak-Nolte et al., 1990b; Schoenberg &
Sayers, 1995), a comprehensive  picture of the seismic
wave phenomena produced by multiple fractures has yet to
emerge. This paper uses numerical simulations to
investigate the effects of multiple, parallel fractures on
seismic waves propagating at normal, parallel and oblique
incidence to the fractures and in particular examines
dynamic seismic anisotropy in fractured rock.

Conventional approaches for the seismic characterization
of multiple, parallel fractures in rock typically utilize a
zero-frequency effective medium approximation. The
additional compliance of the fractures are lumped into
normal and shear stiffnesses, and the overall stiffness of
the fracture plus rock system is captured in effective

elastic moduli (e.g., White, 1983; Schoenberg and Muir,
1989; Schoenberg and Sayers, 1995). Reducing the
properties of the fractured rock system to its static
effective properties results in P- and S-wave velocities that
vary with respect to fracture orientation and shear wave
splitting.  However, since this approach is inherently a
static (i.e., zero-frequency) approximation, it does not
include frequency-dependent amplitude and velocity
variations with respect to fracture orientation due to
reflection losses across fractures and wave channeling
along fractures.

The objectives of this paper are to use numerical finite
difference simulations: (1) to investigate the effects of
multiple, parallel fractures on the amplitudes and
velocities of compressional and shear waves, and (2) to
examine differences in the static (zero-frequency) and
dynamic amplitude and velocity anisotropy.

FRACTURE ANISOTROPY
Anisotropy in the elastic properties of rock can result from
the combined effects of aligned microcracks, mineral
grains, bedding planes, and layering that vary with
direction. At the scale of a hydrocarbon reservoir,
anisotropy may also be present in the form of aligned
fractures. Because fractures can significantly affect the
flow characteristics of the reservoir, seismic methods for
determining the orientation of the fracture sets are of
considerable interest to reservoir geophysicists.

Approaches for estimating the static anisotropic elastic
moduli for rock with aligned fracture sets have been
developed by a number of investigators, including White
(1983) and  Schoenberg and Muir (1989). Recently, the
applicability of these zero-frequency theories has been
questioned (Pyrak-Nolte et al., 1990b; Frazer, 1995). This
has led to the development of numerical techniques for
computing the dynamic anisotropic properties of fractured
rock (Frazer, 1995; Coates & Schoenberg 1995).

Fractures in rock are thin, localized regions of low
compliance. This compliance results in sharp jumps in the
normal and tangential components of displacement across
the fracture, the magnitude of the jump being proportional
to the compliance of the fracture and the stress acting on
the fracture. For a planar fracture oriented in the x-y plane,
the displacement-discontinuity (Schoenberg, 1980; Pyrak-
Nolte et al., 1990a) boundary conditions for the fracture
are given by
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Here, the stresses are represented by τij, κi is the fracture
stiffnesses in units of [Pa/m], and ui is the particle
displacement, with superscripts + and - referring to
opposite sides of the fracture. The displacement-
discontinuity boundary condition is a generalized boundary
condition in the sense that it degenerates to the boundary
conditions for a welded interface as κ→ ∞  and to those

for a traction-free interface as κ→ 0. Laboratory acoustic
measurements of body wave transmission across single
fractures (Pyrak-Nolte et al., 1990a) and fracture interface
waves along single fractures (Pyrak-Nolte et al., 1992; Roy
and Pyrak-Nolte, 1995) have established the validity of the
displacement-discontinuity model for describing the
dynamic properties of fractures.

The static equivalent properties of aligned fractures
can be obtained by decomposing the elastic compliance of
the fractured rock as the sum of the compliance of the host
rock and the compliance for the set of parallel fractures.
The resulting effective elastic moduli for the fractured
rock mass can be represented by a transversely isotropic
medium (Schoenberg & Sayers, 1995),

FINITE DIFFERENCE SCHEME FOR FRACTURED
ROCK
Elastic wave propagation in a medium with multiple,
parallel fractures was investigated by using an elastic,
two-dimensional, staggered grid finite difference code
based on the approach of Virieux (1986). The code uses
fourth-order differencing in space, and second-order
differencing in time (Levander, 1988). The primary
advantages of the 4th-order staggered grid scheme for this
study are its computational efficiency, accuracy, and
flexibility by which fractures can be modeled either
explicitly, as displacement-discontinuity boundary
conditions or implicitly using effective elastic constants.

COMPARISON OF TI MODEL WITH EXPLICIT
FRACTURE MODEL

Finite difference simulations were performed to examine
the differences between a model in which fractures are
modeled explicitly as displacement-discontinuity boundary
conditions and a model in which the fractures are modeled
by their equivalent transversely isotropic (TI) properties .
Figure 1 shows the domain of computation which consists
of a square region of 12 wavelengths in size. The
simulations were performed using a broadband explosion
source (first-derivative of a Gaussian function, central
frequency of 374 Hz) located at the center of the model. At

the external boundaries of the models,  absorbing
boundary conditions were imposed.

The explicit fracture model consisted of 80, 40 and 20
horizontal fractures modeled as displacement-discontinuity
boundary conditions with normal and shear stiffnesses,
κ T = κ N = 6.8x1010 Pa/m, which yields the

transmission coefficient as 0.99 for normal incident P-
wave transmission. The fracture spacing was
approximately as 1/8, 1/4/ and 1/2 of a wavelength. For
the TI fracture model, the five elastic constants were
selected to exactly represent the static effective properties
of the 80-fracture system.
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Figure 1: The geometry of the TI and explict fracture models used in
the finite difference simulations. The elastic moduli of the TI model
were selected to match the static equivalent elastic properties of a

medium containing 80  parallel fractures with κ T = κ N =

6.8x10
10 

Pa/m.

Snapshots of the horizontal and vertical components of
particle velocity at 16 ms are shown in Figure 2 for the
explicit fractures models with different number of
fractures per wavelength. As the number of fractures per
wavelength increases, the velocity of the waves
propagation in the vertical direction decreases due to the
accumulation of the group time delays across the fractures.
The amplitude of the scattered incoherent waves becomes
small  compared with distinct coherent waves as the
fractured system becomes as effectively homogeneous
medium. The scattering and conversion of waves
introduces slower propagating secondary wavefronts.  For
models with closely spaced fractures, these wavefronts
become parabolic. Superposition of the two parabolic arcs
forms a triplication in the wavefront, a characteristic of the
wavefield observed for very strongly anisotropic TI
medium.

A snapshot at 16 ms for the model is shown in Figure 3.
Compared with the results for the explicit model, the
shape of the outer first wavefrontis more elliptic and the
velocity anisotropy is weaker than to  the explicit model. It
is also noted that triplication is not observed  in the inner
second wavefront and scattered waves are not pertbertion
the wavefield.



In addition to triplication, it should also be noted that
seismic waves energy appear focused along the vertical
direction. A possible explanation for this phenomena is
that seismic waves are multiply reflected, resulting in
localized resonance in the vertical direction.
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Fig 2 Snapshots of the horizontal (x) and vertical (z) component of
particle velocity for the explicit fracture model (80, 40 and 20-
fracture) at 16 ms.

The horizontal component of observed waves at Receiver 1
and  (Fig.1 ) and the vertical component at Receiver 2 are
shown in Fig 4 and 5 respectively.  Due to the symmetry of
the problem, other components do not have significant
amplitudes. Similar results for TI medium are shown in
Figure 6. The first arrival of the waves observed in the
horizontal direction (Figure 4) shows a very similar
waveform followed by reflected or guided waves which
vary for different fracture spacing. For 80-fracture case,
the late arriving waves decay as the number of the
fractures per wavelength increases , and the medium
approach those of the effectively homogeneous TI medium.
On the other hand, waves observed in the vertical
direction show quite different behavior for differing
numbers of fractures. Unlike waves in the horizontal
direction, velocity, frequency, and the amplitude of the
first arrival decrease the number of the fractures increases.
This due to the frequency dependent filtering effect of the

fractures.  Wave follow following the first part of waves
also show ‘ringing’ which seems to decay for  the 80-
fracture model, but still show significant
amplitude.
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Fig 3 Snapshots of the horizontal (x) and vertical (z) component of
particle velocity for the TI model with the static effective properties
of the 80-fracture at 16 ms.
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Fig 4 The seismic waveforms for the horizontal component received
at Receiver 1 for explicit fracture model.

The most remarkable feature of the waves observed at
Receiver 2 for explicit model is that the second wavefront
amplitude increases significantly as the number of the
fractures increases. One  dimension al simulations have
revealed that this second wave cannot be seen for plane
waves propagating perpendicular to the fractures. From
the snapshots shown in Figure 2, it can be seen that this
second wave is the ‘pseudo S-wave’ with particle motion
approximately parallel to the wavefront. This wave cannot
be seen in Figure 6 because for TI medium used for this
simulation, the wavefront becomes horizontal at Receiver
2, losing both vertical and horizontal components of the
particle velocity. For the explicit models, triplication leads
to the coexistence of two wavefronts which intersect at an
angle on the vertical axis. When the particle motion of the
two wavefront superposed, a large vertical motion results
on the vertical axis. The amplitude of second increases as
the triplication becomes more distinct for models with
smaller fracture spacing.
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Fig 5 The seismic waveforms for  the vertical component of particle
velocity received at Receiver 2 .

CONCLUSION
This study has used finite difference simulations to
investigate the effects of multiple, parallel fractures on
seismic waves generated by a point explosion source.
These simulations reveal that even when the stiffness of
the fracture is high (i.e., P-wave normal incidence
transmission coefficient of 0.99), the accumulation of
frequency-dependent time delays and reflection losses
arise because the effective medium fracture model is an
inherently a static approximation that neglects frequency-
dependent time delays, reflections, and transmission
filtering which occur as the wave crosses each fracture.
A comparison of the explicit fracture model for fracture-to-
wavelength ratios of 1.7, 3.3, and 6.7 (i.e., 20, 40, 80 and
fractures, respectively) shows that as this ratio increases:
(1) the amplitudes of multiply reflected waves propagating
normal to the fractures and fracture channel waves
propagating along the fractures decrease, and (2) the
wavefronts develop triplication. This latter phenomena is a
characteristic of strong anisotropy.  No such triplication
are present in the wavefront of the effective medium
fracture model.  In summary, this study has demonstrated
that the dynamic properties of fractures can differ
significantly from that predicted by static effective
medium approximations, and that the frequency-dependent
nature of fractures should not be ignored in the seismic
characterization of fractured rock.
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Fig. 6 The seismic waveforms received at Receiver 1 and 2 for  the
horizontal and vertical component of particle velocity for TI model.
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